
Package: gridstackeR (via r-universe)
September 9, 2024

Type Package

Title Wrapper for 'gridstack.js'

Version 0.1.1

Maintainer Peter Gandenberger <peter.gandenberger@gmail.com>

Description An easy way to create responsive layouts with just a few
lines of code. You can create boxes that are draggable and
resizable and load predefined Layouts. The package serves as a
wrapper to allow for easy integration of the 'gridstack.js'
functionalities <https://github.com/gridstack/gridstack.js>.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Depends R (>= 3.5.0)

Imports htmltools, shiny, shinyjs, checkmate

Suggests shinydashboard, shinytest2

Repository https://petergandenberger.r-universe.dev

RemoteUrl https://github.com/petergandenberger/gridstacker

RemoteRef HEAD

RemoteSha 6b7dff430b16fccf82740a69166f8dada1e1aac7

Contents
check_grid_stack_item_list . 2
gridstackeR_demo . 2
grid_stack . 3
grid_stack_item . 5

Index 7

1

https://github.com/gridstack/gridstack.js

2 gridstackeR_demo

check_grid_stack_item_list

Checks that all given arguments are grid_stack_items

Description

Checks that all given arguments are grid_stack_items

Usage

check_grid_stack_item_list(...)

Arguments

... arguments to be checked

Value

TRUE if arguments are valid grid_stack_items, FALSE otherwise

gridstackeR_demo Demo

Description

a short example of gridstackeR

Usage

gridstackeR_demo()

Value

an example shiny shinyApp that uses the gridstackeR package to create a responsive layout with
resizable and draggable boxes.

Examples

Not run:
gridstackeR_demo()

End(Not run)

grid_stack 3

grid_stack Grid Stack Container

Description

This acts as a container for the grid_stack_item’s.

Usage

grid_stack(
...,
id = "",
opts = "{cellHeight: 70}",
ncols = 12,
nrows = 12,
dynamic_full_window_height = FALSE,
height_offset = 0

)

Arguments

... all grid_stack_items contained in this grid. No arguments other than grid_stack_items
are allowed here.

id the id of the grid_stack container used for multi-grid layouts. (if no id is pro-
vided, a random id is generated)

opts grid options: check gridstack documentation for more details

ncols number of columns for the grid (If you need > 12 columns you need to generate
the CSS manually)

nrows number of rows for the grid
dynamic_full_window_height

if TRUE, the grid will change dynamically to fit the window size minus the
height_offset

height_offset margin for the grid height, see dynamic_full_window_height

Value

a grid_stack that can contain resizable and draggable grid_stack_items

Examples

Not run:
library(gridstackeR)
library(shiny)
library(shinydashboard)
library(shinyjs)

https://github.com/gridstack/gridstack.js/tree/master/doc#grid-options

4 grid_stack

ui <- dashboardPage(
title = "gridstackeR Demo",
dashboardHeader(),
dashboardSidebar(disable = TRUE),
dashboardBody(
useShinyjs(),
make sure the content fills the given height
tags$style(".grid-stack-item-content {height:100%;}"),
grid_stack(

dynamic_full_window_height = TRUE,
grid_stack_item(

h = 2, w = 2,
box(

title = "gridstackeR", status = "success", solidHeader = TRUE,
width = 12, height = "100%",
div("Drag and scale the Boxes as desired")

)
),
grid_stack_item(

h = 4, w = 4, id = "plot_container",
box(

title = "Histogram", status = "primary", solidHeader = TRUE,
width = 12, height = "100%",
plotOutput("plot", height = "auto")

)
),
grid_stack_item(

h = 3, w = 4, min_h = 3, max_h = 3, id = "slider",
box(

title = "Inputs", status = "warning", solidHeader = TRUE,
width = 12, height = "100%",
sliderInput("slider", "Slider input:", 1, 100, 50)

)
),
grid_stack_item(

w = 4, h = 10, x = 0, y = 0, id = "c_table",
DT::dataTableOutput("mytable")

)
)

)
)

server <- function(input, output, session) {

output$plot <- renderPlot({
x <- faithful$waiting
bins <- seq(min(x), max(x), length.out = input$slider + 1)

hist(x, breaks = bins, col = "#75AADB", border = "white",
xlab = "Waiting time to next eruption (in mins)",
main = "Histogram of waiting times")

grid_stack_item 5

},
set the height according to the container height (minus the margins)
height = function() {max(input$plot_container_height - 80, 150)}
)

output$mytable <- DT::renderDataTable({
DT::datatable(mtcars, options = list(

set the height according to the container height (minus the margins)
scrollY = max(input$c_table_height, 200) - 110, paging = FALSE

)
)

})
}

shinyApp(ui, server)

End(Not run)

grid_stack_item Grid Stack Item

Description

This is a wrapper for the individual items to be displayed in the grid_stack Check the gridstack
documentation for more information.

The default for all parameters is an empty string, this will make them disappear for gridstackjs

Usage

grid_stack_item(
...,
id = NULL,
auto_position = NULL,
x = NULL,
y = NULL,
w = NULL,
h = NULL,
max_w = NULL,
min_w = NULL,
max_h = NULL,
min_h = NULL,
locked = NULL,
no_resize = NULL,
no_move = NULL,
resize_handles = NULL,
hide_overflow = TRUE

)

https://github.com/gridstack/gridstack.js/tree/master/doc#item-options
https://github.com/gridstack/gridstack.js/tree/master/doc#item-options

6 grid_stack_item

Arguments

... content to include in the grid stack item

id the id of the item, used for save and load functions, this param is propagated
through to lower levels. If the id is provided, changes made to the item by the
user will trigger reactive inputs for width, height (both in pixels), x, y, w, h (all
4 in number of columns/rows) (see Documentation for more information)

auto_position if set to TRUE x and y attributes are ignored and the element is placed to the
first available position. Having either x or y missing will also do that

x, y element position in columns/rows. Note: if one is missing this will auto_position
the item

w, h element size in columns/rows
max_w, min_w, max_h, min_h

element constraints in column/row (default none)

locked means another widget wouldn’t be able to move it during dragging or resiz-
ing. The widget can still be dragged or resized by the user. You need to add
no_resize and no_move attributes to completely lock the widget.

no_resize if set to TRUE it disables element resizing

no_move if set to TRUE it disables element moving

resize_handles - widgets can have their own custom resize handles.

hide_overflow hides the overflow of the item-content by default (i.e adds "overflow:hidden;"
to the style) For example ’e,w’ will make that particular widget only resize east
and west.

Value

a grid_stack_item to be placed inside a grid_stack. This item is resizable and draggable by default.

Examples

Not run:
grid_stack_item(
h = 2, w = 2,
box(
title = "gridstackeR", status = "success", solidHeader = TRUE, width = 12, height = "100%",
div("Drag and scale the Boxes as desired")

)
)

End(Not run)

Index

check_grid_stack_item_list, 2

grid_stack, 3, 5
grid_stack_item, 3, 5
gridstackeR_demo, 2

7

	check_grid_stack_item_list
	gridstackeR_demo
	grid_stack
	grid_stack_item
	Index

